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Defect production behind the shock wave front of an inhomogeneous quench

P. Tatrocki and T. Dobrowolski
Institute of Physics AP, Podchora¸żych 2, 30-084 Cracow, Poland

~Received 25 August 2003; published 28 January 2004!

The creation of defects behind the half kink in the presence of external force distributions is considered. The
influence of external potentials on kink production behind the shock wave front of an inhomogeneous quench
is examined. It is shown that depending on the impurity strength and orientation its interaction with the front
of the decaying false vacuum, even in homogenous systems, may lead to single or even multiple defect
production in the vicinity of the impurity center.
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I. INTRODUCTION

Presently, symmetry-breaking phase transitions are u
uitous in the description of condensed matter systems,
ementary particle physics, and cosmology. A uniform ba
ground for the description of continuous phase transiti
has been proposed by Kibble and Zurek in their illuminat
articles@1# and tested numerically in a series of papers@2#.
The validity of this scenario was also confirmed experim
tally in He3 @3#. According to the Kibble-Zurek scenario
during the transition to the broken-symmetry phase, the o
parameter in causally separated regions of space chose
ferent vacuum values. The coexistence of different doma
of irreconcilable low-temperature vacua on boundaries le
to the creation of topological defects. The initial density
the defects produced follows from the observation that if
system evolves towards the critical point as a consequenc
critical slowing down, the relaxation time diverges and p
turbations of the order parameter propagate very slowly
the time of propagation of density perturbations over
correlated regions becomes comparable with the relaxa
time, the field configuration in the system freezes in. T
same time after transition the system regains capacity to
spond for the change of external parameters. The correla
length at the instant of freeze out sets the size of the reg
over which the same vacuum can be selected. Hence, it
the resulting density of the topological defects. The corre
tion length at that instant describes the size of the defect
therefore the density of defects is limited by their size at
time of freeze-out.

This description concerns the homogenous quench in
ideally homogenous infinite system with no boundaries.
real systems a phase transition is often associated wi
large degree of inhomogeneity. Examples of generically
homogeneous systems are superconducting layers and l
crystals. Actually, in liquid crystals one could observe tra
sitions that can only approximately be considered as tra
tions of the second type. On the other hand, superfluid
uids in nature are free of impurities; however, contaminat
of superfluid helium can also be achieved by application
some artificial method such as the aerogel technique@4#.
Considerations of the impact coming from the impurities
the production of defects during continuous transition w
performed in one and more dimensions@5#. It was proved
that the number density of the produced defects is chara
ized not only by the correlation length at the instant of free
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out but also by the length scale describing the distribution
impurities in the system. This situation was described in R
@6#. It seems that in an inhomogeneous medium there are
components of the number density of produced defects.
part of the defects is produced in the neighborhood of
impurities and seems to be persistently confined by the
purities. The second component consists of free defects
duced in homogenous areas located between impurities.
component decreases with time as a consequence of
kink-antikink annihilation. The creation of kink-antikink
pairs is also possible, but at this stage of evolution it is mu
less efficient than annihilation. For late times, i.e., when
system is in the stationary state, the probability of the c
ation of pairs is determined by the proper Boltzmann ex
nent @7#. The contribution of each component to the to
number density depends on the separation and strength o
impurities. For instance, if the separation of the strong i
purities is comparable with correlation length~or smaller!
then there is no room for creation of free defects. In t
opposite regime, i.e., for widely separated impurities,
main part of the kinks is produced in areas located betw
impurity centers and therefore the total number density
dominated by free kinks. These two components are a
visible at late times when the system became stationary@8#.

In the real condensed matter systems, we have to face
types of complications. First is inhomogeneity of the m
dium, and second is inhomogeneity of the quench. Inhom
geneity of the quench is a consequence of the fact that
change of thermodynamic parameters is unlikely to be i
ally uniform. As a consequence of this inhomogeneity t
symmetry is initially broken in some region of the syste
The order parameter chose some vacuum value in this re
and when the broken symmetry region grew, the choice
the vacuum value was to some degree enforced in the ne
borhood of the initial region. This mechanism of inhomog
neous quench in a homogenous medium could lead to
pressing of or even halting of production of topologic
defects@9#

In this paper we consider the influence of the impurit
on creation of kinks during an inhomogeneous quench. In
next section we illustrate mechanisms of the formation
defects behind the front of the decaying false vacuum in
presence of impurities. The last part contains some rema

II. CREATION OF KINKS BEHIND THE
SHOCK WAVE FRONT

Let us consider the dissipativef4 model in one spatial
dimension
©2004 The American Physical Society09-1
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FIG. 1. Initially the half kink moves in the direction of the impurity~a!. The modulus of the amplitude of the force distributionuAu is
small and therefore after a period of interaction of the half kink with the impurity center~b!,~c! we obtain a free half kink moving in the
initial direction ~d!. The impurity is too weak to produce any additional kink structures in its vicinity. The parameters in the plots a
following: A50.28,G510, l51, a51, x055. The dashed line represents the impurity force distribution.
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c2
] t

2f~ t,x!1G] tf~ t,x!5]x
2f~ t,x!1af~ t,x!2lf3~ t,x!,

~1!

where f is a real scalar field andl, G, c, a are positive
constants. For positivea the system remains in the broke
symmetry phase. We know that in these settings the equa
of motion posesses a stationary solution, called a half k
which describes a decay of the false vacuum

fH
(6)~x2vst !56Aa

l

1

11eA(a/2)g(x2vst)
, ~2!

where g51/A12vs
2/c2 and vs56c/A112G2c2/9a. The

velocity of the half kink is determined in a natural way b
the equilibration of the forces coming from the potential a
the friction present in the system. The solution describ
above exists for Eq.~1! which contains the inertia term an
also in the overdamped model achieved in the largec limit.

If we enrich Eq.~1! by adding a noiseh(t,x) term and
assume space and time dependence of the quantitya(t,x)
which allows for inhomogeneous change of the sign ofa,
than we obtain an equation modeling the inhomogene
phase transition from the symmetric to broken symme
phase
01620
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c2
] t

2f~ t,x!1G] tf~ t,x!

5]x
2f~ t,x!1af~ t,x!2lf3~ t,x!1h~ t,x!. ~3!

It is usually assumed thath is the Gaussian white noise o
temperatureT:

^h~ t,x!&50,

^h~ t,x!h~ t8,x8!&52pGkTd~x2x8!d~ t2t8!. ~4!

In Ref. @9# some particular forms of the functiona5a(t
2x/v) have been considered. One choice was the step fu
tion a(t,x)5a0sgn(t2x/v) and another was the obliqu
step function. Both choices describe the phase front wh
arises as a consequence of the nonuniform change of
modynamic parameters. The authors, who consider inho
geneous quench in a homogenous medium, analyze the
bility of the half-kink solution in the presence of the pressu
shock wave. They compare the velocity of the phase fr
with the speed of the interface between decaying false
true vacua. They conclude that if the interface moves slo
than the phase front then between these two there is eno
room for creation of kinks in the way described by th
9-2
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FIG. 2. At the beginning, the half kink moves in the direction of the impurity~a!. If the orientation of the force distribution is negativ
and its magnitude is not too small, the interaction of the impurity with decaying false vacuum~b!,~c! results in reversing the half kink into
an inverse half kink moving in the direction of thex axis and production of the squeezed antikink at the position of the impurity center
parameters are chosen as follows:A520.5,G510,l51,a51,x055. The impurity is represented by the dashed line.
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Kibble-Zurek mechanism. In the opposite case the sys
left behind the phase front is free of defects.

In the present paper we show that in the system popul
by impurities, creation of defects is possible even in the s
ond case. Almost all defects created in these settings
located in the vicinity of the impurities. Let us add the ter
D(t,x) which describes some deterministic force distributi
to Eq. ~1!:

1

c2
] t

2f~ t,x!1G] tf~ t,x!

5]x
2f~ t,x!1af~ t,x!2lf3~ t,x!1D~ t,x!. ~5!

In our numerical studies we choose a force distribution of
form

D~x!56AS a

l D 3/2 sinhb~x2x0!

cosh3b~x2x0!
, ~6!

whereAP@0,̀ ) describes the strength of the impurity forc
b[A(a/2)b and b[A11A/l. This particular choice of
function D(t,x) is motivated by the fact that for this choic
we know an exact solution which has the form of a squee
kink confined by the impurity center@6#. We considered the
01620
m

ed
c-
re

e

d

effect of propagation of the half kink, which is interfac
between false and true vacua, in the presumed force di
bution.

We have found three qualitative different scenarios of
evolution of the field configuration. If the modulus of th
amplitude of the force distributionuAu is sufficiently small
then, after the period of the interaction of the half kink wi
the impurity center, we obtain half-kink moving in the initia
direction. The evolution of the system is presented in Fi
1~a!– 1~d!. In this case the impurity is too weak to produc
any additional kink structures in its vicinity. In this scenari
similar to the homogenous case, the system left behind
decaying false vacuum front is free of additional kink stru
tures.

The situation changes significantly if the orientation of t
force distribution changes and its magnitude is not too sm
i.e., if parameterA became negative and its value becam
significant. In this case the interaction of the impurity with
decaying false vacuum results in a reversal of the half k
into inverse half kink and production of the squeezed a
kink at the position of the impurity center. The process of t
formation of this additional kink structure and the free prop
gation of the inverse half kink in the direction of thex axis is
illustrated in Figs. 2~a!– 2~d!.

The last possibility occurs for positively oriented and su
ficiently strong impurities, i.e., for sufficiently large an
9-3
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FIG. 3. First the half kink moves toward the imperfection positioned atx0 ~a! and then we observe formation of half kinks and inver
half kinks, and their movement in the opposite directions~b!,~c!. They meet each other and form free antikinks in addition to the exis
squeezed kink formed at the position of the impurity~d!. The parameters are chosen as follows:A51, G510,l51, a51, x055. The dashed
line represents the force coming from the impurity.
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positive parameterA. The evolution of the field configura
tion in this case is presented in Figs. 3~a!– 3~d!. In Fig. 3~a!
we have the half kink moving in the direction of thex axis.
Then we observe the formation of half kink’s and inver
half kink’s and their movement in opposite directions. Th
meet each other and form a free antikink in addition to
existing squeezed kink formed at the position of the impur
This description of the evolution of the considered field co
figuration follows from the arguments presented below.

In order to understand the meaning of the data prese
in Fig. 3 let us consider the overdamped limit (c→`) of the
model ~1!, i.e.,

G] tf~ t,x!5]x
2f~ t,x!1af~ t,x!2lf3~ t,x!. ~7!

First we consider an ansatz

fD~ t,x!52Aa

l

eb(x2d)2e2b(x2d)

eb(x2d)1e2b(x2d)1 f ~ t !
. ~8!

In the considered limit we obtain an exact equation for t
function f:

2G ḟ ~ t !5
3

2
a f~ t !, ~9!
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which has two solutions. Trivial solutionf (t)50 leads to the
known function fD(t,x)5fA free(x2d). The second solu-
tion f (t)5exp@3a(t1t0)/2G#5exp@2Aa/2vs(t1t0)# is much
more interesting because it leads to a new solution of Eq.~7!.
It is worth stressing that at first sight this new solution loo
similar to the sum of half kinks moving in opposite dire
tions but this is not the case, i.e.,fD(t,x)ÞfH

(1)(x2d
2vst)1fH

(2)(x2d1vst). Let us notice that for the sum o
half kinks, function f has the formf (t)52cosh@Aa/2vs(t
1t0)#.

We showed that half-kink-like solutions meet at some p
sition preceding the localization of the squeezed kink trap
by the impurity center. The field configuration, which
the final state for late times, can be approximately descri
as a sum of the squeezed kink@6# confined by the impurity
center, the free antikink associated with the squeezed k
and the half kink propagating freely to infinity. If we choos
an ansatz

f~ t,x!5fK sq~x2x0!1fA free~x2d!1fH~x2vst !
~10!

with unknown antikink positiond, then equation of motion
~5! can be reduced to the following algebraic constraint
parameterd:
9-4
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~fK sq1fA free!@fK sqfA free1fH~fK sq1fA free1fH!#50.
~11!

Let us rescale fieldsf[Aa/l F and rewrite the last equa
tion with the use of the rescaled variableF:

~FKsq1FA free!@FKsqFA free1FH~FKsq1FA free1FH!#50.
~12!

This equation is approximately fulfilled almost everywhe
The disappearing of the left side of this equation in t
neighborhood of the antikink localization can be achiev
by the proper choice of the parameterd. Let us notice that
in the vicinity of the antikink localizationFA freeux'd'0
and FHux'd'1. On the other hand, if we consider r
gime Aa/2 b(d2x0)!1 then FK squx'd'FK sq(d2x0)
'Aa/2 b(d2x0) and we can rewrite Eq.~12! in the ap-
proximate form

Aa

2
b~d2x0!FAa

2
b~d2x0!11G50.

It is worth stressing that although the localization of the a
tikink associated with the squeezed kink is not determin
very precisely,d'x02A2/a/b, it is uniquely defined by the
impurity positionx0 and its strengthA.

Now the interpretation of the results presented in Fig
~at least in the overdamped limit! is straightforward. We can
consider the profile presented in Fig. 3 as a sum of the
kink moving in the direction of thex axis, the squeezed kin
located at the impurity center, and the accompany
‘‘double half kink’’ fD evolving to the free antikink configu
ration. In all simulations we assumed large damping wh
prevents the creation of additional unstable excitations~all
these excitations decay for sufficiently late time!.

Finally we also show the evolution of the system in t
presence of a few defects in Figs. 4~a!,4~b!. Numerical simu-
lations show that for the considered form of the force dis
bution each impurity center is occupied by the squeezed k
and accompanied by the free antikink. It is easy to imag
that if the force distribution is more complicated and to so
degree random then under a fixed asymptotic the field c
figuration in the region of the nonzero force distribution m
have a complicated structure, however, this structure fits
boundary conditions. Defects in this situation can be ide
fied as points where the scalar field changes its sign.
stable configuration in this system is achieved after su
ciently long time due to the decay of the initial state
radiation and damping of all excitations present in the s
tem.

III. REMARKS

The context of our investigations is composed of the st
ies of the creation of defects behind the shock wave que
front a5a(x2t/v). In fact in our studies we do not chang
a but, at any rate, we can draw some conclusions concer
this case. We know that in homogenous media there are
different regimes of creation defects behind the quench fr
In the first regime the speed of propagation of the que
01620
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front v is lower than the speed of propagation of the front
the decaying false vacuumvs . In this regime the half kink
moves in step with the quench front and therefore the cho
of vacuum is solely determined by the choice of bound
conditions. Due to the stability of this solution, no kinks c
be created behind the quench front. In the second regimvs
is smaller than the speed of propagation of the quench f
v and therefore there is enough room for instability betwe
the quench front and the front of the decaying false vacu
leading to the production of defects.

In the present paper we concentrated on creation of
fects behind the quench front in the first regime, i.e., in
regime where in homogenous media the system left beh
this slow front is free of defects. We showed that even in t
regime some number of defects behind the front is create
inhomogeneous media. This number and the particular fo
of final configuration is determined by the force distributio
and the boundary conditions. We showed for a particu
form of the impurity force distribution, the final configura
tions which posess additional kink structures created beh
the decaying false vacuum front. We would like to stre
that in this regime creation of kink structures is suppres
in the homogenous case. Although the particular form
the assumed force distribution may seem to be a little ar

FIG. 4. The evolution of the system in the presence of a f
defects. Numerical simulations show that for very strong force d
tribution each impurity center is occupied by the squeezed kink
accompanied by the free antikink~b!. The parameters are chosen
follows: A5199,G51, l51, a51, x0155,x02515, x03525.
9-5
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cial we would like to stress that its crucial feature
the decreasing-increasing~increasing-decreasing! character
which is a generic behavior of any nonconstant force dis
bution ~see Fig. 5!.

It seems that in an inhomogeneous medium there are
components of the number density of produced defects.
part of defects is produced in the neighborhoods of the
purities and they are persistently confined by the impurit
The second component consists of free defects produce

FIG. 5. Any nonconstant force distribution has loca
decreasing-increasing~increasing-decreasing! character.
u,

s.

a-
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homogenous areas located between impurities. This com
nent is present in the second regime mentioned above. M
over this component decreases with time as a consequen
the kink-antikink annihilation. Creation of kink-antikink
pairs is also possible but at this stage of evolution it is mu
less efficient than annihilation. The contribution of ea
component to the total number density, depends on the s
ration of the impurities and on their strength. For instance
separation of the strong impurities is comparable with cor
lation length~or smaller! then there is no room for creatio
of free defects. In the opposite regime, i.e., for widely se
rated impurities, the main part of the kinks is produced in
areas located between impurity centers and therefore the
number density is dominated by free kinks@5,6#.
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